Ornstein - Uhlenbeck Process Steven Finch

نویسنده

  • Steven Finch
چکیده

Also, a process {Yt : t ≥ 0} is said to have independent increments if, for all t0 < t1 < . . . < tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are independent. This condition implies that {Yt : t ≥ 0} is Markovian, but not conversely. The increments are further said to be stationary if, for any t > s and h > 0, the distribution of Yt+h− Ys+h is the same as the distribution of Yt− Ys. This additional provision is needed for the following definition. A stochastic process {Wt : t ≥ 0} is a Wiener-Lévy process or Brownian motion if it has stationary independent increments, ifWt is normally distributed and E(Wt) = 0 for each t > 0, and if W0 = 0. It follows immediately that {Wt : t > 0} is Gaussian and that Cov(Ws,Wt) = θ 2min{s, t}, where the variance parameter θ is a positive constant. For concreteness’ sake, we henceforth assume that θ = 1. Almost all sample paths of Brownian motion are everywhere continuous but nowhere differentiable. One technical stipulation is required for the following. A stochastic process {Yt : t ≥ 0} is continuous in probability if, for all u ∈ R + and ε > 0, P (|Yv − Yu| ≥ ε)→ 0 as v → u. This holds if Cov(Ys, Yt) is continuous over R + × R . Note that this is a statement about distributions, not sample paths. Having dispensed with preliminaries, we turn to the central topic. A stochastic process {Xt : t ≥ 0} is an Ornstein-Uhlenbeck process or a Gauss-Markov Copyright c ° 2004 by Steven R. Finch. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ornstein - Uhlenbeck Process

Also, a process {Yt : t ≥ 0} is said to have independent increments if, for all t0 < t1 < . . . < tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are independent. This condition implies that {Yt : t ≥ 0} is Markovian, but not conversely. The increments are further said to be stationary if, for any t > s and h > 0, the distribution of Yt+h− Ys+h is the same as the distributio...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

Exponential Ergodicity and β-Mixing Property for Generalized Ornstein-Uhlenbeck Processes

The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the exponentially β-mixing property. Our results can cover...

متن کامل

Generalized fractional Ornstein-Uhlenbeck processes

We introduce an extended version of the fractional Ornstein-Uhlenbeck (FOU) process where the integrand is replaced by the exponential of an independent Lévy process. We call the process the generalized fractional Ornstein-Uhlenbeck (GFOU) process. Alternatively, the process can be constructed from a generalized Ornstein-Uhlenbeck (GOU) process using an independent fractional Brownian motion (F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004